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Abstract. We study resonant rescattering corrections to the Deck amplitude B for diffrac- 
tive dissociation of hadrons. The results of numerical calculations for a variety of physically- 
reasonable forms of B show that provided B falls off faster than a simple pole the rescattered 
amplitude is well approximated by the form Beid cos 6, rather than by Beld sin 6 / k .  We 
conclude that the former expression is generally relevant to situations in which the Born 
amplitude B is spatially diffuse, while the latter applies if B is spatially localised. 

1. Introduction 

In the Deck model of diffraction dissociation (Deck 1964) an incident particle emits 
a virtual particle (usually a pion) and carries on either as itself (e.g. p - + p  + n) 
or as low-mass quasi-stable particle (e.g. n -+ p + n, p ---f A + n). The virtual particle 
is diffractively scattered on the target, becoming a real state. This process produces 
a low-mass kinematic enhancement in the effective mass spectrum of the fast particles, 
dominated by a relative s wave (Stodolsky 1967). The enhancement results from the 
rise of the phase-space factor from threshold combined with the fall of the amplitude 
for the Deck process. The faster the Deck amplitude falls off in mass, the more 
spatially diffuse is the production process to which it corresponds ; this is discussed 
further below, following equation (9). 

If the fast particles can interact among themselves, however. effects of rescattering 
must be taken into account, and the bare Deck amplitude must be regarded as 
a Born term. This is illustrated in figure 1. The rescattering effects are particularly 
important if the interaction is resonant, and this is the case we shall treat exclusively. 

In previous work we have considered the effect of rescattering, and applied our 
results to the phenomenological analysis of data on diffractive production (Bowler 

( a )  (61 

Figure 1. Rescattering following diffractive dissociation. The rescattered amplitude is the 
sum of the Deck term (a) and the rescattering process (b). 
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et al 1975). Our principal result was that for rescattering corrections to the Deck 
process the rescattered amplitude will be much closer to the form 

F - Be” cos 6, (1) 
which actually vanishes at resonance, than to the conventional ‘FSI enhancement’ 
form 

(2) 
B e‘” sin 6 F rr -___ 

k 

in which the full effects of the resonance are seen. In (1) and (2) B is the Deck 
amplitude and S is the two-particle elastic phase-shift, assumed to be resonant; k 
is the two-particle phase-space factor. 

We have been led to reconsider our earlier result (1) by a paper of Basdevant 
and Berger (1976). These authors consider rescattering effects through a single 
resonance coupled to both the K*n and pK diffractively-produced components of 
the Q system. The bare Deck amplitudes are represented by a simple pole in the 
Knn mass (Stodolsky 1967) and the resonance is inserted via a K matrix with a 
single pole in each channel. The advantage of these assumptions is that analytic 
expressions can be written down for the full amplitude; but if these assumptions 
are introduced in the one-channel, one-resonance case a result of the form (2) rather 
than (1) is obtained. 

In this paper we therefore examine critically the assumptions we have made pre- 
viously (Bowler et a1 1975) and the assumptions made by Basdevant and Berger. 
We show that the assumptions of Basdevant and Berger are rather special, and that 
in most situations of rescattering following diffractive production (i.e. from a spatially- 
extended source) the rescattered amplitude is likely to be much closer to (1) than 
to (2). 

2. The calculation of rescattering effects 

Let us suppose that the elastic phase-shift 6 returns asymptotically to zero: that 
is, the usual N and D functions satisfy the condition 

N’k’ dmt2 
(3) 

where R signifies the ‘right-hand’ unitarity cut along the real m’2 axis from threshold. 
In this case, we say that the resonance is ‘dynamically generated’. Then the rescattered 
amplitude is given unambiguously by the expression (Omnes 1958) 

where g = ei6 sin 6. 
We first note that (4) can also be written as 

eiB sin 6 ( PV JR N’k’B’ dmt2)  
k Nn mJ2 - m2 

F = B e ” c o s 6  + ~ -- - ( 5 )  

where PV stands for principal value. Thus to obtain (1) the PV contribution must 
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be very small, while for (2) it must dominate. We therefore analyse carefully the 
conditions under which the PV term is or is not large. 

To facilitate comparison with the work of Basdevant and Berger it is useful to 
introduce an alternative expression for F ,  which may be obtained (Jackson 1961) 
by rewriting the integral in (4) as a contour integral in the m'2 plane, with the contour 
running just below the real axis from +CO, encircling the threshold, and returning 
to +x just above the real axis. The contour can then be completed by a great 
circle at infinity, C, say, and by a piece enclosing the singularities of B. Provided 
the integral over C, vanishes, one obtains 

1 Im B'D' dmI2 
- m2 - ie 

where L is the 'left-hand' cut corresponding to the singularities of B. 

evaluated immediately and the result is 
If B is now assumed to have a simple pole at m2 = mi, the integral in (6) can be 

(7) 
B(m2)D(mi)  - BDo e1'sin 6 

N k '  
F =  

D (m2) 

The same result can also be obtained from (4) provided that (3) is true, a condition 
which is equivalent to requiring that the integral over C, vanishes. Thus (7) is un- 
doubtedly the solution to the rescattering problem if B is a simple pole and the 
phase-shift is dynamically generated. For the case of a resonant phase-shift, N is 
approximately constant over the resonance region where sin 6 is large, and hence 
(7) is of the form (2) rather than (1). In fact, for a pure pole form of B, the principal- 
value term in (5) swallows up the Be'' cos 6 term completely. 

In the work of Basdevant and Berger, however, the resonance is represented by 
a Breit-Wigner formula, so that the phase-shift does not return to zero at infinity- 
that is, a CDD pole (Castillejo et al 1956) is present. In this case it is easy to verify that 
the integral over C, is not zero, and thus the results of using (6) and (4) will differ. To 
illustrate the point, let us simplify the kinematics so that m2 = c + d k 2  for some con- 
stants c and d.  Equation (6) will necessarily give (7)  again, while in this case (4) gives 

k: - k2  + Tko 
k; - k2  - i r k  

F = B  

for a Breit-Wigner resonance with parameters k,  and r as indicated, where iko is the 
value of k at the pole position m2 = mi. Since for this case D x (k," - k2 - irk), the 
forms (7) and (8) differ by 

(k: + k2) 
k: - k2 - i r k '  

B 

which is of the form constant/D, since B cc (kg + k 2 ) - ' .  Thus the forms (7) and (8) 
differ by a solution (Jackson 1961) of the homogeneous FSI equation. 

We now observe that (8) can be written as 

eid sin 21 B eis cos 6 + Bko ___ 
k '  (9) 
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The Fourier transform of the distribution of relative momentum of the two fast 
particles may be interpreted as the spatial correlation between them. In practical 
cases of diffractive production, a sharp fall-off is seen in the mass distribution of 
the diffractively-produced fast pair (see $53 and 4 below); this corresponds to a sharp 
fall in momentum space and thus to a diffuse spatial relation between the pair. 
In (9), the parameter ko controls the rate of fall-off of B in momentum space: equiva- 
lently, k;  is a measure of the spatial correlation between the pair. Thus in diffractive 
production we expect the second term in (9) to be relatively small, and the final 
result using (4) to approximate to (1) rather than (2). 

Yet using (6) in this case leads to the result (7), which is of the form (2), and 
so the essential question is: how is one to determine which is the physically correct 
solution in this case? We have tackled this question as follows. The ambiguity has 
arisen in the case of two special assumptions, namely that the phase-shift is given 
by a pure Breit-Wigner resonance, and that B is a pure pole. If one relaxes these 
assumptions a unique result will be obtained: then, as one moves closer to the special 
case, the physical solution will be indicated by continuity. We have investigated the 
effects of modifying B so that it falls off for large m2 more quickly than in-2 (i.e. 
we add some damping), and we have also used dynamically-generated phase-shifts 
rather than Breit-Wigner ones. We can then allow the extra damping to vary systema- 
tically (so as to include, in particular, the pure pole case), and we can also mimic 
dynamically the Breit-Wigner phase-shift to a greater or lesser extent. In this way 
we think that we have arrived at a good understanding of the essential physics in- 
volved. 

In summary, our results are as follows. Although (7)  is indeed exact for a pure 
pole form of B, additional damping in B can very quickly bring aboyt a drastic 
modification: for physically-reasonable damping of the Deck term, we find that it 
is the form (1) which is a good approximation to the exact result (4), and the form 
(2) is seriously wrong. We also find that the dynamically-generated phase-shift may 
be replaced by the Breit-Wigner one (i.e. N is treated as a constant in (5)) without 
significantly modifying the results. 

These conclusions require some qualification. They hold if the dynamically-gener- 
ated phase-shift is well approximated by a Breit-Wigner formula up to several full 
widths beyond the resonance. If, however, the phase-shift starts to return to zero 
soon after passing in, then the rescattered amplitude is intermediate between the 
forms (1) and (2 ) ,  unless an unreasonable amount of damping is introduced. 

3. Numerical calculations 

We have considered two possible forms of damping, introduced in each case through 
a modification of the simple pion propagator ( t  - m,2)-l. The simple n-exchange 
Deck amplitude, with diffractive nN scattering in figure 1, is proportional to 

S,S 

m, - t 2 

where snS is the square of the total centre-of-mass energy of the recoil nucleon and 
scattered pion, and t is the four-momentum transfer squared carried by the exchanged 
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pion. At high energies and in the forward direction we have (see, for example, the 
review by Berger (1975)) 

s(mt - t )  
m2 - m,Z %N = 

where s is the square of the total centre-of-mass energy. Thus in the diffractive case 
the pion pole is cancelled in the final amplitude (Stodolsky 1967), and if the exchanged 
pion is described by the simple propagator only, the Deck amplitude B is given 
by a pole in m2. Since the FSI problem is linear, the normalisation of B is irrelevant 
for our present purposes, and we take for the undamped B the simple form 

1 

B =  
1 

m2 - m,2' 

If, however, an exponential damping factor (corresponding to form factor effects, for 
example) is introduced, 

then the Deck amplitude is no longer pure s wave, and projecting out the s-wave part 

Alternatively, if the pion propagator is Reggeised via 

1 exp ( - ir t)  
t - m : +  t - m :  

then 

In both cases the s-wave Deck amplitude is damped at large values of m2 (t,,, and 
t,,, are the kinematic limits in t). 

We have made calculations for a range of values of a, and for CI = 3.. In addition, 
because Reggeisation at low mass is a dubious procedure, and because of the unitarity 
problem (Michael 1975, Morgan 1975), we have made calculations with r - 0  at 
low m2 values, rising over a mass range - 0 3  GeV/c2 to in at a number of different 
masses, and we have done this for two different dynamically-generated phase-shifts, 
6, and 6,. These phase-shifts, and the corresponding N functions, are shown in 
figure 2. (For 8, we used a five-pole form for N ,  and for 6, a seven-pole form.) 

In figure 3 we show the rescattered Deck amplitudes for 6, and 6,, and for 
a range of values of a in (11). The form (l), the 'pure pole' form (7), and the results 
of replacing the dynamically-generated resonance in (4) by a Breit-Wigner formula 
are also shown. It will be observed that for the very moderate damping factors 
(a > 1 (GeV)-2 for JA and a > 0.5 (GeV)-' for 6,) the form (1) is a good approxima- 
tion to the full amplitude; the difference between (1) and the exact numerically-eva- 
luated amplitude is the (numerically small) principal-value term in (5). For the phase- 
shift a,, replacing the dynamically-generated resonance by a Breit-Wigner makes 
little difference. 
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Figure 2. (a) The phase-shifts used in the calculations. 6, and 6, are the dynamically- 
generated phase-shifts, using respectively a five-pole and a seven-pole form for N (see 
figure 2(b)). The curve labelled BW is the Breit-Wigner phase, obtained from 
k cos6 = (m, - m)lt2 with m, = 1.28 GeV/c2, y z  = 0.29 GeV/cZ. (b). The two N functions, 
N, and N , ,  which generate the phase-shifts 6, and 6, via equation (3). 

In figure 4 we show the rescattered Deck amplitudes for the choice (13) for B, 
with an asymptotic value of a of in, and various positions of the ‘pointer’ determining 
where the Reggeisation is switched on. It will be seen that with the pointer below 
2 GeV/c2 for a,, and below 4 GeV/c2 for the form (1) is again a good approxima- 
tion to the exact amplitude. 

4. Conclusions from the numerical results 

The results shown in figure 4 are particularly suggestive. Since k cot 6 = Re(D)/N, 
the region where the phase-shift 6 starts to fall back from the Breit-Wigner asymptotic 
value of n is correlated approximately to the region where N starts to increase (see 
figure 2). Referring now to equation (5 ) ,  we would expect the principal-value term 
to contribute relatively little if the extra damping in B sets in at mass values less 
than or equal to those at which the rise in N commences. This is indeed the lesson 
to be drawn from figures 2 and 4: the amplitude approximates to the form (1) when 
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Figure 3. Results of calculations of the various amplitudes of interest, using the form 
(11) for the Deck amplitudes. (U)  and (b) are for the phase-shift in (a) the parameter 
a in (11) has the value 0.1 (GeV)-' and in (b) it has the value 1.0 (GeV)-'. (c), (d) 
and (e)  are for the phase-shift 6,; in (e),  a = 0.1 (GeV)-', in (d), a = 0.5 (GeV)-2, in 
( e )  a = 1.0 (GeV)-'. In  this figure, and in figure 4, the full curve is the exact solution 
(equation (4)), the broken curve is Beld cos6 (equation (l)), the chain curve is the amplitude 
calculated using equation (4) with a Breit-Wigner resonance form for D and the chain 
curve with three dots is the 'pure pole' form equation (7). The curves are traversed in 
a counter-clockwise sense as m increases; the topmost point in all cases is at approxi- 
mately the resonance mass (here taken to be about 1.3 GeV/c2). 

the damping is introduced at mass values of the order of, or less than, those at 
which 6 starts to fall and N to rise. The longer the phase-shift stays up, the longer 
the introduction of the damping can be delayed. 

The phase-shifts of well-established elastic resonances are well approximated by 
Breit-Wigner formulae, at least over some sensible energy interval. We are not 
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Figure 4. Results of calculations of the various amplitudes of interest, using the form 
(13) for the Deck amplitude. (a) and (b) are for the phase-shift 6,. The Regge phase 
parameter ci has a dependence on the 3 x  mass m given by ci(m) = ix/[exp 2(c - m) + 11, 
In (a) the value of the parameter c is 6 GeV/cZ, in (b) it is 2 GeV/cZ. (c), (d) and (e) 
are for the phase-shift JB; in (c), c = 6 GeVic', in (d )  c = 4 GeV/cz and in ( e )  c = 2 GeV/c2. 

required to speculate about whether these states are truly CDD poles (representing 
qCj states, possibly), or whether they are dynamically-generated in the hadronic chan- 
nels: indeed, it is not self-evident that these points of view are mutually exclusive. 
The full amplitude is well approximated by the form (1) when damping is introduced 
at physically-reasonable mass values and in physically-reasonable amounts ; and in 
this case, the form (2) is grossly wrong. An independent empirical indication of the 
amount of damping to be expected is provided by the presence of waves other than 
the s wave in diffractively-produced 371 (Antipov et a1 1973) and Knn (Brandenburg 
et a1 1976) systems, and indeed Reggeisation (with constant cx) of the pion propagator 
accounts qualitatively for a large number of the features of the 371 data (Ascoli et 
a1 1973). 

We conclude that resonant rescattering corrections to' diffractive production via 
the Deck mechanism will lead to an amplitude well approximated by the form (l), 
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and that therefore our analysis (Bowler et a1 1975) remains a valid possible interpre- 
tation of the data. 

5. Inclusion of direct resonance production 

Equation (4) is the solution of the inhomogeneous FSI equation. To such a solution 
we may add the general solution of the corresponding homogeneous equation 

F' = PJD 
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Figure 5. The intensity (IFl2 x phase-space) and phase of the total amplitude given by 
equation (14). The Breit-Wigner phase-shift is used. (a) and (b)  are for the choice (11) 
for the Deck amplitude, with a = 0.5 GeV-'; (c) and (d) are for the choice (13), with 
the parameter c in .(m) set equal to 4GeV/c2. The different curves are labelled by the 
different values of the phase parameter 4 in equation (14). The intensities corresponding 
to + 4  and - 4  are indistinguishable. 
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where P is a polynomial. In previous work (Bowler et a1 1975) we have interpreted 
the presence of such terms as due to direct diffractive production of the resonance. 
In order to exhibit the rich structure of the total amplitude which is obtained when 
such terms are included, we show in figure 5 the intensity and phase corresponding 
to the total amplitude 

F + pexp(i$)/(m, - m - iy'k) (14) 
where F is given by (4) evaluated in the N = constant approximation, with the choices 
(11) (a = 0.5 (GeV)-2) and (13) (Reggeisation at 4 GeV/c2) for B, where we took 
m, = 1.28 GeV/c2, y 2  = 0.29 GeV/c2, p = 0.12 and various values of the relative phase 
4. We should point out that diffractive resonance production is not properly under- 
stood and we do not know the relative phase 4. The diffractive part of the elastic 
scattering amplitude is imaginary, so that the production amplitude B is certainly 
imaginary. The phase of P has been measured for diffractive production of p mesons 
(Alvensleben et al 1971) and is .z90", but the mechanism in that case is diffractive 
scattering of a virtual p into the real state: elastic scattering. Production of A1 or 
Q resonances involves S-p-wave quark transitions and in a simple model these 
amplitudes would be real rather than imaginary, but would vanish in the forward 
direction. The study of diffractive meson production may thus yield important infor- 
mation on the structure of hadrons, but it is essential that good data (z 10' events) 
are obtained in each of a number of ranges (z 0.1 GeV/c2) of the momentum trans- 
ferred to the diffractively-excited system. 
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